
 Unit Testing in Visual Studio 2019
 Course ID #: VS-114

Hours: 14

www.tcworkshop.com Pages 1 of 3 800.639.3535

Course Content

Course Description:
This two-day, instructor-led course provides students with the knowledge and skills to effectively

use Visual Studio 2019 to design, write, and run high-quality .NET unit tests. The course focuses on

the applicable features and capabilities of Visual Studio as it relates to unit testing and Test-Driven

Development. This course also introduces other popular unit testing tools and techniques, and

demonstrates how they integrate with Visual Studio and your team’s development lifecycle.

At Course Completion:
After competing this course, student will be able to:

• Why unit tests are critical to software

quality

• How unit tests and integration tests differ

• Popular .NET unit testing frameworks

• Popular JavaScript unit testing frameworks

• MSTest V2 improvements and capabilities

• The anatomy of a unit test

• The 3A pattern (Arrange, Act, Assert)

• Using Assert, StringAssert, and

CollectionAssert

• Testing for expected exceptions

• Test class inheritance

• Why and how to test internal APIs

• MSTest, NUnit, and xUnit test projects

• Unit testing .NET Core projects

• Using Test Explorer to manage your tests

• Organizing tests using traits and playlists

• Running unit tests in parallel

• In-Assembly Parallel (IAP) execution

• Parallelism by assembly, class, and method

• Running tests and managing test results

• Viewing, grouping, and filter tests and

results

• Creating and using a .runsettings file

• Continuous testing in Visual Studio

• Test-Driven Development (TDD) as a

design practice

• Why write your tests first

• Practicing TDD within Visual Studio

• How to effectively refactor within TDD

• How to effectively refactor legacy code

• Practices for writing good unit tests

• Happy path vs. sad path testing

• Testing boundary conditions (Right-BICEP)

• Organizing tests and test assemblies

• Test naming conventions (e.g. BDD)

• Why and how to analyze code coverage

• Using code coverage as a metric

• Parameterized (data-driven) unit tests

• Concurrent testing using Live Unit Tests

• Concurrent testing using NCrunch (3rd

party)

• Testing difficult code with the use of

doubles

• Using dummies, fakes, stubs, and mocks

• Using Microsoft Fakes to test difficult code

• Using Rhino Mocks to test difficult code

• Using NSubstitute to test difficult code

• Generating MSTest unit tests with

IntelliTest

• Generating NUnit unit tests with IntelliTest

 Unit Testing in Visual Studio 2019
 Course ID #: VS-114

Hours: 14

www.tcworkshop.com Pages 2 of 3 800.639.3535

Prerequisites:
• The C# language

• Visual Studio 2015, 2017, or 2019

• Writing, debugging, and maintaining code

• Application Lifecycle Management basics

• Their organization’s development lifecycle

• Building a high-quality software product

Target Student:
This course is intended for current software development professionals who are involved with

building highquality .NET applications. Students will use Visual Studio while learning how to

design, write, and run unit tests.They will also learn many relevant practices and techniques, such as

TDD, refactoring, and how to test difficult

code using doubles.

Topics:

Module 1: Unit Testing in .NET

• What is (and isn’t) a unit test

• Why write unit tests

• .NET unit testing frameworks

• MSTest V2, NUnit, xUnit

• The anatomy of a unit test

• Writing and running your first unit test

Module 2: Unit Testing in Visual Studio

• Testing support in Visual Studio

• MSTest, NUnit, and xUnit test projects

• Test Explorer and other windows

• Writing and running unit tests in Visual

Studio

• Managing a large number of tests and test

results

• Organizing tests by grouping, filtering, and

playlists

• Continuous testing in Visual Studio

Module 3: Test-Driven Development (TDD)

• TDD overview and benefits

• Practicing TDD within Visual Studio

• Effectively refactoring code

• Working with legacy code

• Using CodeLens to support TDD and

refactoring

Module 4: Writing Good Unit Tests

• Asking questions about your code

• Path testing (e.g. happy, sad, evil, etc.)

• Right BICEP testing

• Testing for expected exceptions

• Maintaining high-quality test code

• Unit test naming conventions (e.g. BDD)

• Organizing unit tests

 Unit Testing in Visual Studio 2019
 Course ID #: VS-114

Hours: 14

www.tcworkshop.com Pages 3 of 3 800.639.3535

Module 5: Leveraging Visual Studio

• Analyzing code coverage

• Using code coverage as a metric

• Parameterized (data-driven) unit tests

• DataRow, DynamicData, and DataSource

attributes

• Concurrent testing using Live Unit Testing

• Concurrent testing using NCrunch

Module 6: Testing Difficult Code

• The need to isolate code under test

• Doubles (dummies, stubs, fakes, and

mocks)

• Microsoft Fakes framework (stubs and

shims)

• Comparing mocking frameworks

• Using Rhino Mocks and NSubstitute

frameworks

• Profiling slow running unit tests

• Using IntelliTest with legacy code

